4,381 research outputs found

    Quantum optimal control of photoelectron spectra and angular distributions

    Full text link
    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on e.g. charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime

    Universality of the collapse transition of sticky polymers

    Full text link
    The universality of the swelling of the radius of gyration of a homopolymer relative to its value in the θ\theta state, independent of polymer-solvent chemistry, in the crossover regime between θ\theta and athermal solvent conditions, is well known. Here we study, by Brownian dynamics, a polymer model where a subset of monomers is labelled as "stickers". The mutual interaction of the stickers is more attractive than those of the other ("backbone") monomers, and has the additional important characteristic of "functionality" φ\varphi, i.e., the maximum number of stickers that can locally bind to a given sticker. A saturated bond formed in this manner remains bound until it breaks due to thermal fluctuations, a requirement which can be viewed as an additional Boolean degree of freedom that describes the bonding. This, in turn, makes the question of the order of the collapse transition a non-trivial one. Nevertheless, for the parameters that we have studied (in particular, φ=1\varphi=1), we find a standard second-order θ\theta collapse, using a renormalised solvent quality parameter that takes into account the increased average attraction due to the presence of stickers. We examine the swelling of the radius of gyration of such a sticky polymer relative to its value in the altered θ\theta state, using a novel potential to model the various excluded volume interactions that occur between the monomers on the chain. We find that the swelling of such sticky polymers is identical to the universal swelling of homopolymers in the thermal crossover regime. Additionally, for our model, the Kuhn segment length under θ\theta conditions is found to be the same for chains with and without stickers.Comment: 13 pages, 10 figures, supplementary material (see ancillary directory), to appear in Soft Matte

    Self-Organized Dynamical Equilibrium in the Corrosion of Random Solids

    Full text link
    Self-organized criticality is characterized by power law correlations in the non-equilibrium steady state of externally driven systems. A dynamical system proposed here self-organizes itself to a critical state with no characteristic size at ``dynamical equilibrium''. The system is a random solid in contact with an aqueous solution and the dynamics is the chemical reaction of corrosion or dissolution of the solid in the solution. The initial difference in chemical potential at the solid-liquid interface provides the driving force. During time evolution, the system undergoes two transitions, roughening and anti-percolation. Finally, the system evolves to a dynamical equilibrium state characterized by constant chemical potential and average cluster size. The cluster size distribution exhibits power law at the final equilibrium state.Comment: 11 pages, 5 figure

    Prospects for discovering supersymmetric long-lived particles with MoEDAL

    Full text link
    We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged particles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery reach complementary to ATLAS and CMS, thanks to looser selection criteria combined with the virtual absence of background. It is also interesting to point out that, in such scenarios, in which charged staus are the main long-lived candidates, the relevant mass range for MoEDAL is compatible with a potential role of Supersymmetry in providing an explanation for the anomalous events observed by the ANITA detector.Comment: 12 pages, 6 figures; preliminary results presented in arXiv:1903.11022; matches published version in EPJ

    Gas-Liquid Nucleation in Two Dimensional System

    Get PDF
    We study the nucleation of the liquid phase from a supersaturated vapor in two dimensions (2D). Using different Monte Carlo simulation methods, we calculate the free energy barrier for nucleation, the line tension and also investigate the size and shape of the critical nucleus. The study is carried out at an intermediate level of supersaturation(away from the spinodal limit). In 2D, a large cut-off in the truncation of the Lennard-Jones (LJ) potential is required to obtain converged results, whereas low cut-off (say, 2.5σ2.5\sigma is generally sufficient in three dimensional studies, where σ\sigma is the LJ diameter) leads to a substantial error in the values of line tension, nucleation barrier and characteristics of the critical cluster. It is found that in 2D, the classical nucleation theory (CNT) fails to provide a reliable estimate of the free energy barrier. It underestimates the barrier by as much as 70% at the saturation-ratio S=1.1 (defined as S=P/PC, where PC is the coexistence pressure at reduced temperature T⋆=0.427T^{\star}= 0.427). Interestingly, CNT has been found to overestimate the nucleation free energy barrier in three dimensional (3D)systems near the triple point. In fact, the agreement with CNT is worse in 2D than in 3D. Moreover, the existing theoretical estimate of the line tension overestimates the value significantly.Comment: 24 pages, 8 figure

    Suppression of hole decoherence in ultrafast photoionization

    Get PDF
    In simple one-photon ionization, decoherence occurs due to entanglement between ion and photoelectron. Therefore, the preparation of coherent superpositions of electronic eigenstates of the hole in the photoion is extremely difficult. We demonstrate for the xenon atom that the degree of electronic coherence of the photoion in attosecond photoionization can be enhanced if the influence of many-body interactions is properly controlled. A mechanism at low photon energies involving multiphoton ionization is found, suppressing the loss of coherence through ionization into the same photoelectron partial waves. The degree of coherence found between the 4 d0 and 5 s hole states is, on the one hand, limited by Auger decay of the 4 d0 hole. On the other hand, increasing the population ratio such that a significant portion of the state is in a true superposition of both states renders the maximization of the degree of coherence difficult
    • …
    corecore